
Self-Adaptive and Resource-Efficient SLA
Enactment for Cloud Computing Infrastructures

Michael Maurer, Ivona Brandic
Distributed Systems Group

Vienna University of Technology
Vienna, Austria

{maurer, ivona}@infosys.tuwien.ac.at

Rizos Sakellariou
School of Computer Science

University of Manchester
Manchester, U.K.

rizos@cs.man.ac.uk

Abstract—Cloud providers aim at guaranteeing Service Level
Agreements (SLAs) in a resource-efficient way. This, amongst
others, means that resources of virtual (VMs) and physical
machines (PMs) have to be autonomically allocated responding
to external influences as workload or environmental changes.
Thereby, workload volatility (WV) is one of the crucial factors
that influence the quality of suggested allocations. In this paper
we devise a novel approach for self-adaptive and resource-
efficient decision-making considering the three conflicting goals
of minimizing the number of SLA violations, maximizing re-
source utilization, and minimizing the number of necessary
time- and energy-consuming reconfiguration actions. We propose
self-adaptive rule-based knowledge management for autonomic
VM reconfiguration considering the rapidness of changes in the
workload, i.e., WV. We introduce a novel WV categorization
and present cost and volatility based methods for self-tuning.
We evaluate these methods by a large variety of synthetically
generated workloads, and by real-world measurements gathered
from an image rendering application and a scientific workflow
for RNA sequencing. Evaluation shows that in most cases the
self-adaptive approach outperforms the static approach.

Index Terms—Cloud Computing, Autonomic Computing,
Self-Adaptation, Service Level Agreement, Rule-based System,
Knowledge Management, Resource Management.

I. INTRODUCTION

The vision of Cloud computing is to provide computing
power as a utility like electricity, gas, or water to a broad
variety of customers [6]. To make Cloud computing a reliable
means of computing, customers agree on so-called Service
Level Agreements (SLAs) for certain non-functional QoS
goals, the service price, and the penalty in case the provider
violates the agreement. Cloud providers can offer their infras-
tructure as a service (IaaS), where the customer’s application
runs inside a virtual machine (VM). Governing such an infras-
tructure should happen autonomically to foster high scalability
and to be able to react promptly and without human interaction
to unforeseen external influences as workload changes.

Moreover, as energy costs of data centers are already very
high [14], IaaS Cloud providers have a high incentive to
minimize their energy consumption. As Cloud infrastructures
are designed to host a large number of VMs, even slightly
downsizing each of them – without causing SLA violations
– might result into a big resource gain. This lower amount
of provided resources can then be mitigated to reduce energy
consumption, e.g., by powering off PMs that become unused.

Related work has observed the initial placement of VMs
quite well, and some works also deal with the impact mi-
grations have [26], [18]. However, VM sizes are normally
assumed to be static (on Amazon, e.g., there exist only three
types of VM sizes, which are not designed to change during
runtime [1]) and changing their configuration has only been
observed by few, as in [17]. The authors present a rule-based
knowledge management (KM) approach that triggers actions
to avoid under- and over-utilization of every resource based
on threat thresholds (TTs). However, as with many approaches
presented in related work, also this one depends on important
parameters, i.e., TTs, that heavily influence performance, but
neglects the configuration thereof. To achieve real autonomic
governance of a Cloud infrastructure, it is crucial for any
proposed approach to self-adapt its parameters to changing
conditions in application usage, SLAs, and similar factors.

In this paper our prime focus is to investigate methods to au-
tonomically set and adapt the TTs of the rule-based approach.
We analyze several different methodologies. Whereas some
methods set the TTs based on past performance, others rely
on knowledge gathered from monitoring the workload itself.
To achieve the latter, we introduce the notion of workload
volatility (WV) and determine a way to calculate it and
dynamically classify workload into WV classes. Furthermore,
we investigate synthetically generating wide-spread workloads
for Cloud applications. We use these and real-world workloads
from an image rendering software, as well as a bioinformatics
workflow for RNA sequencing [8], to evaluate our approach.

With this work we ultimately present a prototype for an
autonomic SLA enactment and resource management tool for
Cloud computing infrastructures on the level of VMs, whose
advantages are manifold. Practically no a-priori learning is
necessary and adaptation happens on the fly during execution.
The approach automatically takes the different characteristics
of various resource types into account. Finally, it is general
in the sense that it does not only handle specific types of
workload. It does not require specific domain knowledge nor
is it specialized on only some domains like medical services
or image rendering software. With its self-adaptability it is
independent of any important parameters to be tuned.

The remainder of this paper is organized as follows: Section
2 describes related work. Section 3 gives background informa-

tion about the autonomic loop and the rule-based approach.
Thereafter, Section 4 details the autonomic parameter adap-
tation methods, and Section 5 evaluates them using various
workloads. Finally, Section 6 concludes the paper.

II. RELATED WORK

We have determined two different aspects to compare
our work with: SLA and resource allocation management in
Clouds, also related to KM; and self-adaptive algorithms in
large-scale distributed systems.

Firstly, there has been some considerable work on optimiz-
ing resource usage while keeping QoS goals. These papers,
however, concentrate on specific subsystems of Large Scale
Distributed Systems, as [13] on the performance of memory
systems. Furthermore, Petrucci [20] and Bichler [4] investigate
only one general resource constraint. A quite similar approach
to our concept is provided by the Sandpiper framework [25],
which offers black-box and gray-box resource management for
VMs. Contrary to our approach, though, it plans reactions just
after violations have occurred. The VCONF model [22] also
pursues similar goals as presented in Section I, but depends on
specific parameters, can only execute one action per iteration
and neglects the energy consumption of executed actions. As
to KM, Bahati et al. [3] also use rules to achieve autonomic
management. They provide a system architecture including a
KB and a learning component, and divide all possible states of
the system into so called regions, which they assign a certain
benefit for being in this region. This is quite similar to the rule-
based approach we base our work upon. However, their actions
are not structured, but are mixed together into a single rule,
which makes the rules very hard to manage and to determine
a salience concept behind them. Additionally, the regions are
statically set and it is not investigated how to adapt them.
Hoyer et al. [10] also undertake a speculative approach as in
our work by overbooking PM resources. They assign VMs to
PMs that would exceed their maximum resource capacities,
because VMs hardly ever use all their assigned resources.
Computing this allocation they also take into consideration
workload correlation of different VMs. Borgetto et al. [5]
tackle the trade-off between consolidating VMs on PMs and
turning off PMs on the one hand, and attaining SLAs for CPU
and memory on the other. However, the authors assume a static
setting and do not consider dynamically changing workloads.
Summarizing, there has been a great deal of work on the
different escalation levels, whereas VM configuration has not
been observed yet neither its self-adaptation.

Secondly, Dutreilh et al. [7] investigate horizontal scaling,
i.e., adding and removing VMs running an application server
by using a load balancer, using a threshold-based and a
reinforcement learning technique. However, the authors do
not consider adapting the thresholds themselves via learning.
Moreover, the authors determine problems with static thresh-
olds as well as with determining good tuning for the rein-
forcement algorithms. The authors also state the importance
of understanding the workload variation, but do not present
a method how to deal with it. Kalyvianaki et al. [12] use

Kalman filters for CPU resource provisioning for virtualized
servers. They self-adapt their approach by using variances and
covariances. Padala et al. [19] develop self-tuning controllers
for multi-tier applications using control theory. Song et al.
[23] use self-adaptation in the field of Cloud federations. Their
algorithm selects tasks and allocates them by finding a trade-
off between SLA adherence and resource utilization. This
trade-off is represented by a parameter, which is optimized
using a similar principle as the bisection method. For the
optimization the benefit of a specific threshold is estimated
by simulation. This estimation is executed several times until
an adequate value is found. [21] apply genetic algorithms for
decision making and self-reconfiguration, but on the network
topology of remote data mirrors.

III. BACKGROUND

In this section we describe the autonomic loop together with
the rule-based knowledge management approach.

The presented management tool is an essential building
block of the FoSII project [2], whose goal is to autonomically
govern Cloud computing infrastructures. The management of
the FoSII infrastructure relies on the autonomic control loop,
which consists of the following phases: first, it monitors
(M) the managed infrastructure with the help of sensors;
second, it analyses the monitored data (A); third, it plans
actions to execute (P); fourth, it executes them (E). The full
loop is known as MAPE. The MAPE loop enhanced with
a knowledge base (MAPE-K) [11] is the design paradigm
for our approach. The monitoring information is gathered by
the hardly intrusive and highly scalable Lom2His framework
[9] and the execution of the actions is simulated by a KM-
technique agnostic simulation engine [16].

In order to reduce the complexity of the NP-hard resource
management problem in a Cloud, we hierarchically struc-
ture the problem into several so-called “escalation levels”
[17]. This work is about the two lowest escalation levels,
i.e., doing nothing and VM configuration. It is important
to determine when to do nothing, since every reallocation
action consumes time and energy. Thus, reallocation actions
should only be recommended when necessary. Reallocation
actions reset VM parameters like provided CPU power, stor-
age, memory, or incoming/outgoing bandwidth. The rule-based
approach achieves this and works as follows: The utilization
of a resource is divided into three regions with the help of
two threat thresholds (TTs), TT rlow and TT rhigh. Region +1
(utr < TT rlow) signifies a region, where the resource is over-
provisioned. In region −1 (utr > TT rhigh) the resource is in
danger of under-provisioning, or is already under-provisioned.
In region 0 (TT rlow ≤ utr ≤ TT rhigh) the resource is well
provisioned. The central idea behind this design is that the
ideal value called target value tv(r) for the utilization of a
certain resource is exactly in the center of region 0.

If the utilization value after some measurement leaves this
region by using more (Region −1) or less resources (Region
+1), we set the utilization back to the target value, i.e., we
increase or decrease allocated resources so that the utilization

is again at

tv(r) =
TT rlow + TT rhigh

2
%.

As long as the utilization value stays in region 0, no action
will be recommended. A more detailed description of the rule-
based approach can be found in [17].

All in all, we take a speculative approach: We try to allocate
less than agreed as upper bound, but more than utilized
without running into an SLA violation. Setting and adapting
the mentioned TTs is the main focus of the remaining paper.

IV. AUTONOMIC PARAMETER ADAPTATION

In this section we will explain how the autonomic adaptation
and configuration of the autonomic manager works. Since the
autonomic manager as presented in Section III is configured
by threat thresholds, we will present their autonomic adapta-
tion in this section. We will describe two basically different
approaches: The first approach (cf. Section IV-A) is based on
changes within a cost function, whereas the second approach
(cf. Section IV-B) relies on changes in the workload.

A. Approaches based on the cost function

In this approach the autonomic adaptation of the TTs is
based on the definition of the cost function in [17]. The general
idea is that if cost has increased for some time, TTs should be
adapted. Then two different subproblems have to be solved:

1) Determine the most appropriate TT(s) to adapt.
2) Determine for how much the chosen TT(s) should be

adapted.
The used cost function is defined as

c(p, w, c) =
∑
r

pr(pr) +wr(wr) + ar(ar), (1)

where, for a certain resource r, pr(pr) : [0, 100]→ R+ defines
the costs due to the penalties that have to be paid according
to the relative number of SLA violations (as compared to
all possible SLA violations) pr; wr(wr) : [0, 100] → R+

defines the costs due to unutilized resources wr; and ar(ar) :
[0, 100]→ R+ the costs due to the executed number of actions
ar (as compared to the number of all possible actions).

During the Analysis phase the KB does not only observe
the cost for one resource r, which naturally is defined as
cr(p, w, c) = pr(pr) + wr(wr) + ar(ar), but also each
individual component pr, wr, and ar for each resource. If the
cost has increased for a resource over a certain period of time
(called look-back horizon k and defined later in this section),
the KB starts to investigate which of the components caused
this increase.

Subproblem 1 (Selecting TTs). To solve subproblem 1, at
first the most problematic cost factor has to be determined.
From this, we can relate to a specific TT increase/decrease
action. To achieve this one can basically imagine two different
methodologies: Either, the maximum cost parameter of the
current iteration, or the parameter with the maximum increase
in the last k iterations is chosen.

Since our cost function cr works by relative and not total
costs, the first method would yield the following problem:
Suppose that no violation has occurred for 10 iterations. Thus,
pr = 0 at iteration 10. At iteration 11, though, a violation
occurs which makes pr = 1/11. In the following iterations,
where pr = 1/12, 1/13, 1/14, . . . (if no further violations
occurs) pr could be easily greater than wr and ar as violations
are usually punished more severely than wastage or actions.
Thus, for these iterations the algorithm would always decide
to act based on violations, even though violations are not
occurring any more in the same time.

Let pr,t signify the relative amount of violations at iteration
t, and let wr,t ar,t be defined similarly. Then, since an increase
in, e.g., violations pr,t occurs iff pr,t is strongly monotonically
increasing, we choose to opt for the second methodology.
According to a look-back horizon k we calculate the difference
between the current cost and the minimum cost of the last k
iterations. The maximum of these differences then points to
the cost summand (arg) that needs attention:

argmax(pr,t − min
1≤j≤k

(pr,t−j),wr,t − min
1≤j≤k

(wr,t−j),

ar,t − min
1≤j≤k

(ar,t−j)). (2)

This results into three different cases, where either the p, w,
or a terms yield the maximum. (We omit cases where some
arguments of the maximum function are equal. In such a case,
the order to choose the arg max is p over w over a. We
prioritize like this, because we assume that penalties incur
higher costs than wastage, and wastage incurs higher costs
than reconfiguration actions.) We define three options which
TT(s) to increase or decrease.

• Option A:
1) pr,t−min1≤j≤k(p

r,t−j) is maximal: Decrease TT rhigh
and TT rlow.

2) wr,t−min1≤j≤k(w
r,t−j) is maximal: Increase TT rlow.

3) ar,t −min1≤j≤k(a
r,t−j) is maximal: Decrease TT rlow

and increase TT rhigh.
• Option B:

1) pr,t−min1≤j≤k(p
r,t−j) is maximal: Decrease TT rhigh

and TT rlow.
2) wr,t−min1≤j≤k(w

r,t−j) is maximal: Increase TT rhigh
and TT rlow.

3) ar,t −min1≤j≤k(a
r,t−j) is maximal: Decrease TT rlow

and increase TT rhigh.
• Option C:

1) pr,t−min1≤j≤k(p
r,t−j) is maximal: Decrease TT rhigh.

2) wr,t−min1≤j≤k(w
r,t−j) is maximal: Increase TT rlow.

3) ar,t −min1≤j≤k(a
r,t−j) is maximal: Decrease TT rlow

and increase TT rhigh.
The difference between options A and B is that if the w term

causes the maximum, it will increase both low and high TTs
in option B, whereas it will only increase TTlow in option A.
The main feature of option C is that it only decreases TThigh
(instead of also decreasing TTlow). So option B and even more

option A could be seen as more cautious as far penalties for
SLA violations are concerned than option C.

Moreover, we present a fourth methodology, option D,
differing from the former three ones. This methodology does
not only consider the maximum cost summand increase, but
handles all cost parameters that show an increase, but only for
the recent iteration. This may promise that the actual situation
of which parameter needs to be adapted is assessed more
precisely. Thus, one can distinguish seven different cases:

1) pr increased: Decrease TT rhigh.
2) wr increased: Increase TT rlow.
3) ar increased: Decrease TT rlow, increase TT rhigh.
4) pr and wr increased: Increase TT rlow, decrease TT rhigh.
5) pr and ar increased: Decrease TT rlow.
6) wr and ar increased: Increase TT rhigh.
7) pr and wr and ar increased: Choose the two factors with

the highest increase and act according to the cases 4-6.
Subproblem 2 (Adapting TTs). After subproblem 1 has

been solved, for subproblem 2 it is important to determine the
value by how much the respective TT(s) should be moved.
Again, one could imagine several techniques to determine a
good value for the TTs as Case Based Reasoning (adapting
the approach as described in [16]), or using fixed or random
increasing/decreasing steps. Observing that for the TTs the
following inequalities must hold

0% < TTlow < TThigh < 100%, (3)

we choose to use the following approach. If we need to
decrease TTlow or increase TThigh, we set it to a certain
fraction 1/α < 1 of the distance from TTlow to 0, and from
TThigh to 100, respectively, expressed as

TT r,t+1
low = TT r,tlow −

TT r,tlow
α

(4)

TT r,t+1
high = TT r,thigh +

100− TT r,thigh
α

. (5)

(Superindex t indicates the time iteration for which the respec-
tive TT is valid. It is omitted, if not relevant.) If we need to
increase TTlow or decrease TThigh, we shrink the distance d
between TTlow and TThigh to d(α−1)

α by moving the TT in
question towards the other, i.e.,

TT r,t+1
low = TT r,tlow +

TT r,thigh − TT
r,t
low

α
(6)

TT r,t+1
high = TT r,thigh −

TT r,thigh − TT
r,t
low

α
. (7)

This especially makes sure that Eq. (3) also holds in this
situation. When both TTlow and TThigh are to be increased
and decreased, respectively, simultaneously (cf. case 4 in
option D), we have to set α > 2 in order not to violate Eq.(3).

Summarizing both subproblems, the graphs in Figure 1
show how the TTs behave for the different options A-C
according to the following scenario: All options start with
TTlow = 50%, TThigh = 75%. At iteration 2 we encounter a
maximum in penalties, at iteration 4 a maximum in wastage
and at iteration 6 a maximum in actions.

B. Approach based on workload volatility

As an alternative to the cost function dependent approach,
we investigate an approach depending on the change in the
workload, i.e., the workload volatility.

We define workload volatility φ as the intensity of change
in the measured workload traces of a certain resource. We
calculate this intensity as the percentage relating the current
value of the workload mr,t to the previous one mr,t−1, i.e.,

φr,t(mr,t,mr,t−1) = |(max(mr,t, rmin)

max(mr,t−1, rmin)
− 1) · 100|

for t ≥ 1 and rmin > 0. The variable rmin stands for the lower
bound for a certain resource stated in the Service Level Objec-
tive (SLO). E.g., we have rmin = 10 for the SLO “10GB ≤
storage ≤ 1000GB”. This amount will always be provided,
even if an application uses less. So measurements below this
value should not influence the behavior of the system, neither
the classification into a WV class. To give an example for
r = storage, let us assume that mr,t = 20,mr,t−1 = 15. We
would get φr,t(mr,t,mr,t−1) = 33.3̇%. If at the next iteration
we have mr,t+1 = 18, then φr,t+1(mr,t+1,mr,t) = 10%.

This is useful, because a problem inherent in options A-
C is that the new parameter k to be tuned is introduced.
Its relevance to WV is the following: When WV is low, a
long look-back horizon is helpful, because a short one would
trigger more TT adaptation situations, which in reality are just
insignificant changes in workload. On the opposite, when WV
is high, changes can get very fast very significant, and thus a
short look-back horizon should be favored.

For this methodology, we introduce WV classes, into which
we automatically categorize workload on the fly. We define the
following WV classes: LOW, MEDIUM, MEDIUM HIGH,
and HIGH. Algorithm 1 dynamically decides to which WV
class a specific workload trace belongs. Dynamically means
that the classification might change at every iteration, if the
workload behavior changes significantly. Significant in this
context means that the current value for WV is compared to
the recent behavior of the workload. Only if the maximum
value for the WV from recent and current behavior falls
into a different category, the classification is altered. From
the second iteration on, the algorithm first calculates φ and
determines the maximum value in φQ, which is a queue of
size φQ maxsize (lines 2-7). The method addLast() adds the
input element as last element to the queue, whereas the method
remove() removes the first element of the queue. Lines 9-
18 classify the workload according to the found maximum
element of the queue. An ε is added to this comparison in
order to hinder small statistical outliers from altering the
classification outcome. Table I summarizes all constants used
for the evaluation.

Based on this classification the following two options E
and F alter their behavior accordingly. Option E chooses a
“good” set of TTs from a-priori evaluation for different WV
classes. This can be tested offline, and altered if specified in
the SLA. E.g., for high-risk applications both TTs could be
lowered, whereas for energy-aware applications, the TTs could

0	
10	
20	
30	
40	
50	
60	
70	
80	
90	

0	 1	 2	 3	 4	 5	 6	 7	

%
	

itera(on	

TT_low	 TT_high	

(a) TT example for option A

0	
10	
20	
30	
40	
50	
60	
70	
80	
90	

0	 1	 2	 3	 4	 5	 6	 7	

%
	

itera(on	

TT_low	 TT_high	

(b) TT example for option B

0	
10	
20	
30	
40	
50	
60	
70	
80	
90	

0	 1	 2	 3	 4	 5	 6	 7	

%
	

itera(on	

TT_low	 TT_high	

(c) TT example for option C

Figure 1: TT examples for options A - C

Algorithm 1 On-the-fly Classifying of Workload into its
Workload Volatility Class

Input: r,mr,t,mr,t−1, φQr

Output: Workload volatility class
1: if t ≥ 1 then
2: {Calculate φ and determine maximum in φQr}
3: φQr.addLast(φr,t(mr,t,mr,t−1))
4: if φQr.size() > φQ maxsize then
5: φQr.remove()
6: end if
7: φQr

max ← max(φQr)
8:
9: {Classify workload volatility}

10: if φQr
max ≤ LOW THRESHOLD + ε then

11: return LOW
12: else if φQr

max ≤ MEDIUM THRESHOLD + ε then
13: return MEDIUM
14: else if φQr

max ≤ MEDIUM HIGH THRESHOLD+ ε then
15: return MEDIUM HIGH
16: else if φQr

max ≤ HIGH THRESHOLD + ε then
17: return HIGH
18: end if
19: end if

Parameter Value
LOW THRESHOLD 10
MEDIUM THRESHOLD 50
MEDIUM HIGH THRESHOLD 75
HIGH THRESHOLD 100
φQ maxsize 10
ε 4

Table I: Parameters used for Algorithm 1

be increased for all workloads. For our case, Table II shows
the TTs for the mentioned volatility classes.

Also from a-priori experience, option F chooses the best
option with its best k according to the best result in the
corresponding WV class. As will be seen in Section V, the
best results for every WV class can be achieved by the options
captured in the right-hand side of Table II.

V. EVALUATION

In this section we evaluate the presented methods for
autonomic TT configuration. We will first describe the used
synthetic and real-world workloads, and then present their in-
depth evaluation.

Option E) Option F)
WV TTlow TThigh Choose Option
LOW 70% 90% C), k = 5
MEDIUM 45% 70% A), k = 20
MEDIUM HIGH 30% 60% A), k = 5
HIGH 20% 50% A), k = 2

Table II: A-priori defined TTs and options based on workload
volatility classes for options E) and F)

A. Workloads

In this subsection we shortly describe the used workloads.
We will first present the synthetic workload and then two real-
world workloads. All of them show static behavior, as well as
rapid, and also continuous changes.

The workload generator originally developed in [16] is in-
tended to generate very general workloads for IaaS platforms.
For one parameter, the workload generation is briefly sketched
as follows: After the initial value is drawn from a Gaussian
distribution an up- or down-trend is randomly drawn, as well
as a duration of this trend, both with equal probability. For
every iteration, as long as the trend lasts, the current measured
value is increased or decreased (depending on the trend) by
a percentage evenly drawn from the interval [iBegin, iEnd].
After the trend is over, a new trend is drawn and the iterations
continue as described before.

Clearly, the values for iBegin and iEnd determine the diffi-
culty for handling the workload. A workload that operates with
low iBegin and iEnd values exhibits only very slight changes
and does, consequently, not need a lot of dynamic adaptations.
Large iEnd values, on the contrary, need the enforcement
mechanisms to be very elastically tuned. For the evaluation
we defined and tested LOW, MEDIUM, MEDIUM HIGH
and HIGH WV scenarios with iEnd = 10%, 50%, 75%, and
100%, respectively. As a minimum change we set iBegin =
2% for all scenarios.

Additionally, we tested real monitoring data gathered using
the mentioned Cloud monitoring framework Lom2His. First,
we measured some execution runs of the image-rendering
application PovRay [9]. The workloads for PovRay contain
13 independent measurements from two categories. Due to
the lack of space, we will present the most interesting three
results from each of the categories. Measurements from the
first category stem from rendering a fish jumping out of and

into water. We will tag these workloads POV F1 to POV F3.
The workloads of the second category stem from rendering
frames for a zoom-up on a box with other boxes inside, which
we will call POV B1 to POV B3. The different runs within
a category just differ in the image resolution.

Second, we evaluated our approach with measurements
gained from the execution of a bioinformatics scientific work-
flow application. We measured utilized resources of TopHat
[24], a typical bioinformatics workflow application analyzing
RNA-Seq data [15], for a duration of about three hours [8].

B. TT adaptation using synthetic workloads

In this subsection we evaluate the six options A-F presented
in Section IV using synthetic workload. As a quality measure,
we will use the cost function defined by Eq.(1) with pr(p) =
100p,wr(w) = 5w, and ar(a) = a for all r, and for all
adaptation options we set α = 4 as used in Eqs. (4)-(7).

rmin SLA parameter rmax

1 GB ≤ storage ≤ 1000 GB
1 Mbit/s ≤ incoming bandwidth ≤ 20 Mbit/s
1 Mbit/s ≤ outgoing bandwidth ≤ 50 Mbit/s
1 MIPS ≤ CPU power ≤ 100 MIPS
8 MB ≤ memory ≤ 512 MB

Table III: SLA for synthetic workloads

Every simulation run consists of 100 iterations. The SLA for
the synthetic workloads is presented in Table III. Results of the
simulation runs can be seen in Figures 2 - 4. In all Subfigures
2-5(a) we present p, 100−w, a for every simulation run. The
specifics of each run are explained below each group of three
bars: At first the adaptation option is stated, or “off”, if none
is used. Adaptation options also show k where applicable.
All autonomic TT experiments have been conducted with
TTlow = 50% and TThigh = 75% initially set (we will refer
to this as the standard case), unless stated otherwise. This
was chosen based on the evaluation in [17], as this setting
brought best results for a LOW MEDIUM WV class with
iEnd = 18%. For compact notation a TT pair is written as
[TTlow, TThigh]. In all Subfigures 2-5(b) we show the cost
c(p, w, c) with the parameters as defined above.

The first three (group of) bars in Figure 2 represent static
TT configurations evaluated in [17]. The goal of the autonomic
TT management is to achieve costs that are as low or lower
than the costs resulting from a static TT configuration. We
see that the best static result in terms of costs can be achieved
setting TTs = [70%, 90%], and the cost for the standard case
is 159. This value is beaten (or attained) by evaluated options
A for k ≤ 25, C for k = 2, 5 with the standard TT pair, C for
all evaluated k with the best (a-priori unknown) TT pair, and
options E and F. The best case is attained by options C with
the best TT pair, and by option E.

For the MEDIUM WV class we deduce from Figure 3 that
options A for k ≥ 15, E and F beat the static TT scenario. On
the contrary, option C achieves the worst results by far.

Due to space limitations, we omit the graphs of the
MEDIUM HIGH WV class, which are quite similar to those

of the HIGH WV class. Evaluation shows that all options
except option C beat the results from the standard case. Option
E achieves the best result.

As far as the HIGH WV class is concerned (cf. Figure 4), all
options beat the results from the “standard case”. From these,
again option C still achieves the worst results, and again option
E results into lowest costs.

17.8	
5	 5.7	 5.98	

12.52	 7.71	 4.5	 5.15	

79	

56.5	 57.9	 57.9	
67.9	 62.3	 57.1	 56.8	 52.1	

44.8	 45.4	 44.6	
59.5	

45.2	 41.1	 44.9	

0	

20	

40	

60	

80	

100	

off,	 [50%,
75%]	

A),	 k=2	 A),	 k=5	 B),	 k=5	 C),	 k=5	 D)	 E)	 F)	

p	 100-‐w	 a	

(a) Violations p, utilization 100− w, actions a

1978	

760	 827	 852	

1472	

1005	

703	 776	

0	

500	

1000	

1500	

2000	

2500	

off,	 [50%,
75%]	

A),	 k=2	 A),	 k=5	 B),	 k=5	 C),	 k=5	 D)	 E)	 F)	

(b) Cost c(p, w, a)

Figure 4: Evaluation results for HIGH WV class

Generally, autonomic adaptation works best for workloads
with higher volatility and quite acceptable for workloads with
lower volatility. We also see that option C for k = 5 generally
achieves worst results except for low WV. This is explained by
the fact as stated in Section IV that option C is less cautious
than other options with respect to SLA violations. These
violations, naturally, have a higher impact with higher WV.
Option B for k = 5 achieves the worst result for LOW WV,
and only outperforms the standard case for MEDIUM HIGH
and HIGH WV classes. Nevertheless, options E and F always
outperform the standard case, and achieve best or very good
results, and there is always a k for option A such that it also
outperforms the standard case. The best cases for each WV
class have been resembled in option F.

C. TT adaption using real-world workloads

This section presents the evaluation of two real-world work-
loads categories. One important point to observe with these
workloads is that they do no longer fall into the same WV
class for all the resources.

The SLA for the POVRay application is depicted in Table
IV. As we have seen that in the previous subsection options
E and F always outperform the standard case, we chose
only these options for further evaluation. As can be seen
in Table V (AM describes whether the autonomic manager
is turned on or off), we remark that for POV F* options
E and F always outperform the standard case with partially
big cost improvements up to 48% (for POV F9), while the
better option is not clearly the one or the other. For POV B*

0	 0	 0	 0.5	 0.04	 0.036	 0.004	 0	 0.69	 0.54	 0.15	 0.07	 0.004	 0.03	 0.002	 0	 0.38	 0	 0.15	

70.4	
83.2	 81.1	 76.4	 73.7	 72.3	 71.1	 66.4	

76.9	 77.5	 76.7	 75	 71.1	
83.5	 83.3	 83.2	

76	 83	 76.7	

11.6	
23.8	 17.5	 16.3	 17.8	 17.2	 15	 9.9	 13.4	 13.1	 16.6	 18.3	 15	

25.6	 24.3	 23.8	
12.3	

23.8	
16.6	

0	

20	

40	

60	

80	

100	

off
,	 [5
0%
,75
%]
	

off
,	 [7
0%
,90
%]
	

off
,	 [6
5%
,95
%]
	

A),
	 k=
5	

A),
	 k=
15
	

A),
	 k=
25
	

A),
	 k=
50
	

A),
	 k=
75
	

B),
	 k=
5	

C),
	 k=
2	

C),
	 k=
5	

C),
	 k=
10
	

C),
	 k=
50
	

C),
	 k=
50
,	 [7
0%
,90
%]
	

C),
	 k=
75
,	 [7
0%
,90
%]
	

C),
	 k=
10
0,	
[70
%,
90
%]
	

D)
	 E)	 F)	

p	 100-‐w	 a	

(a) Violations p, utilization 100− w, actions a

159	

108	 112	
149	 153	 159	 160	

178	
198	

180	
148	 150	 160	

111	 108	 107.7	

170	

109	
148	

0	

50	

100	

150	

200	

250	

off
,	 [5
0%
,75
%]
	

off
,	 [7
0%
,90
%]
	

off
,	 [6
5%
,95
%]
	

A),
	 k=
5	

A),
	 k=
15
	

A),
	 k=
25
	

A),
	 k=
50
	

A),
	 k=
75
	

B),
	 k=
5	

C),
	 k=
2	

C),
	 k=
5	

C),
	 k=
10
	

C),
	 k=
50
	

C),
	 k=
50
,	 [7
0%
,90
%]
	

C),
	 k=
75
,	 [7
0%
,90
%]
	

C),
	 k=
10
0,	
[70
%,
90
%]
	

D)
	 E)	 F)	

(b) Cost c(p, w, a)

Figure 2: Evaluation results for LOW workload volatility class

1.8	 1.68	 1.59	 1.58	 1.58	 1.56	 1.57	 1.58	 1.57	 1.8	 2.65	 5.39	 3.18	 1.41	 1.57	

69.9	 68.3	 67.2	 67	 67	 67	 66.9	 67	 66.9	 67.3	 66.9	
72.7	 69.4	 66	 67	

39.8	 39.4	 39.4	 39.7	 39.8	 39.9	 40.1	 40.3	 40.5	 41.5	
35	

51.9	

37.8	 36.7	 40.1	

0	

20	

40	

60	

80	

off
,	 [5
0%
,75
%]
	

A),
	 k=
50
	

A),
	 k=
25
	

A),
	 k=
22
	

A),
	 k=
21
	

A),
	 k=
20
	

A),
	 k=
19
	

A),
	 k=
18
	

A),
	 k=
15
	

A),
	 k=
5	

B),
	 k=
5	

C),
	 k=
5	 D)

	 E)	 F)	

p	 100-‐w	 a	

(a) Violations p, utilization 100− w, actions a

373	 366	 362.8	 362.6	 362.7	 361.3	 362.6	 363.2	 363	 384	
466	

727	

509	

347	 362	

0	

200	

400	

600	

800	

off
,	 [5
0%
,75
%]
	

A),
	 k=
50
	

A),
	 k=
25
	

A),
	 k=
22
	

A),
	 k=
21
	

A),
	 k=
20
	

A),
	 k=
19
	

A),
	 k=
18
	

A),
	 k=
15
	

A),
	 k=
5	

B),
	 k=
5	

C),
	 k=
5	 D)

	 E)	 F)	

(b) Cost c(p, w, a)

Figure 3: Evaluation results for MEDIUM workload volatility class

workloads there is one case, where neither option outperforms
the standard case, whereas in the other cases either option E
or option F outperform the standard case.

rmin SLA parameter rmax

1 GB ≤ storage ≤ 1000 GB
1 Kbit/s ≤ incoming bandwidth ≤ 80000 Kbit/s
1 Kbit/s ≤ outgoing bandwidth ≤ 8000 Kbit/s
1 MIPS ≤ CPU power ≤ 100000 MIPS
8 MB ≤ memory ≤ 512 MB

Table IV: PovRay SLA

p 100 − w a c(p, w, c) WV AM Details
5.56 63.8 17.0 754 POV F1 off [50%, 75%]
3.0 56.34 14.2 533 POV F1 on E)
3.0 53.44 11.7 544 POV F1 on F)

1.34 72.0 7.7 282 POV F3 off [50%, 75%]
1.12 71.7 7.8 261 POV F3 on E)
0.45 68.9 6.5 207 POV F3 on F)
3.24 72.9 15.8 475 POV F9 off [50%, 75%]
0.78 68.7 12.1 247 POV F9 on E)
1.34 70.1 18.4 302 POV F9 on F)
0.45 72.2 6.1 190 POV B1 off [50%, 75%]
0.44 73.0 6.0 186 POV B1 on E)
0.56 72.3 9.2 204 POV B1 on F)
0.11 71.2 10.1 161 POV B2 off [50%, 75%]
0.11 71.8 6.9 159 POV B2 on E)
0.22 72.5 10.8 171 POV B2 on F)
0.22 72.5 10.3 170 POV B3 off [50%, 75%]
0.45 71.8 8.8 194 POV B3 on E)
0.34 69.7 6.0 191 POV B3 on F)

Table V: Results for PovRay workloads

The SLA of the bionformatics workflow is defined as
follows: 1 MB ≤ storage ≤ 19456 MB, 1 MIPS ≤ CPU Power

≤ 20000 MIPS, and 768 MB ≤ memory ≤ 8192 MB. Figure
5 reveals that all evaluated autonomic options outperform the
standard case with option E achieving by far the best result.
For option A we have also experimented with varying k for
different resources and could achieve the second best result
(tied with option F) by setting k = 10 for storage, k = 2 for
CPU, and k = 5 for memory.

0.56	 0.56	 0.37	 0.37	 0.56	 0.37	 0.19	 0.37	

76.17	 77.1	 77.81	 75.93	 76.66	 78.25	 80.94	 78.25	

4.4	 3.7	 3.7	 4.3	 3.3	 4.1	 4.3	 4.1	
0	

20	

40	

60	

80	

100	

off,	 [50%,
75%]	

A),	 k=2	 A),	 k=5	 A),	 k=15	 A),	 k_st=10,	
k_cpu=5,	
k_mem=2	

A),	 k_st=10,	
k_cpu=2,	
k_mem=5	

E)	 F)	

p	 100-‐w	 a	

(a) Violations p, utilization 100− w, actions a

179	 174	

152	
162	

176	

150	

118	

150	

100	

120	

140	

160	

180	

200	

off,	 [50%,
75%]	

A),	 k=2	 A),	 k=5	 A),	 k=15	 A),	
k_st=10,	
k_cpu=5,	
k_mem=2	

A),	
k_st=10,	
k_cpu=2,	
k_mem=5	

E)	 F)	

(b) Cost c(p, w, a)

Figure 5: Evaluation results for the bioinformatics workflow

Concluding we find that for 11 out of 14 real-world work-

loads both options E and F of the self-adaptive approach
achieve better results than the static approach for at least 7%
(workload POV F2) and at most 48% (workload POV F9).
From the remaining workloads, for two of them (POV B1
and POV B2) only option E performs better, and for only one
workload the static approach outperforms both self-adaptive
ones by 11% (POV B3).

VI. CONCLUSION

In this paper we have devised several methodologies for
autonomically adapting parameters of a Cloud resource man-
agement framework on the level of VM reconfiguration. The
goal of the approach is to reduce SLA violations, increase
resource utilization and achieve both by a low number of
reconfiguration actions.

We have devised two groups of strategies: the first one is
based on a cost function that reflects the goal of the approach.
The other strategy is based on classifying the workload into
workload volatility classes. It acts according to this classi-
fication by either applying the substrategy of pre-configured
parameters or the substrategy of applying the most appropriate
strategy from the first group. In most cases we have seen
that strategies from the latter group achieve better results for
both substrategies, and outperform the strategies not taking
workload volatility into account. Thus, we can deduce that
workload volatility is an important aspect for governing Cloud
infrastructures. Corresponding research is still at its beginning.

For future work we want to prove the benefit regarding the
energy consumption of this approach. We will be able to not
only capture the improvement in costs of the self-adaption,
but also the reduction in energy consumption as compared
to a non-self-adapting approach. Furthermore, we plan to
investigate if we can generalize the findings for autonomically
adapting approaches for other levels of governing Cloud
infrastructures, e.g., VM migration or PM power management.

ACKNOWLEDGMENTS

We want to thank Ivan Breskovic for his valuable comments on this
work, which has been funded by the Vienna Science and Technology
Fund (WWTF) through project ICT08-018 and by COST-Action
IC0804 on Energy Efficiency in Large Scale Distributed Systems.

REFERENCES

[1] Amazon elastic compute cloud (Amazon EC2).
http://aws.amazon.com/ec2/ (2010)

[2] (FOSII) - Foundations of Self-governing ICT Infrastructures.
http://www.infosys.tuwien.ac.at/linksites/FOSII (March 2012)

[3] Bahati, R.M., Bauer, M.A.: Adapting to run-time changes in policies
driving autonomic management. In: ICAS ’08: Proceedings of the 4th
Int. Conf. on Autonomic and Autonomous Systems. IEEE Computer
Society, Washington, DC, USA (2008)

[4] Bichler, M., Setzer, T., Speitkamp, B.: Capacity Planning for Virtual-
ized Servers. Presented at Workshop on Information Technologies and
Systems (WITS), Milwaukee, Wisconsin, USA, 2006 (2006)

[5] Borgetto, D., Casanova, H., Costa, G.D., Pierson,
J.M.: Energy-aware service allocation. Future Gener-
ation Computer Systems 28(5), 769 – 779 (2012),
http://www.sciencedirect.com/science/article/pii/S0167739X11000690

[6] Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud
computing and emerging it platforms: Vision, hype, and reality for
delivering computing as the 5th utility. Future Generation Computer
Systems 25(6), 599 – 616 (2009)

[7] Dutreilh, X., Rivierre, N., Moreau, A., Malenfant, J., Truck, I.: From
data center resource allocation to control theory and back. In: Cloud
Computing (CLOUD), 2010 IEEE 3rd International Conference on. pp.
410 –417 (July 2010)

[8] Emeakaroha, V.C., Labaj, P., Maurer, M., Brandic, I., Kreil, D.P.:
Optimizing bioinformatics workflows for data analysis using cloud
management techniques. In: The 6th Workshop on Workflows in Support
of Large-Scale Science (WORKS11) (2011)

[9] Emeakaroha, V.C., Netto, M.A.S., Calheiros, R.N., Brandic, I., Rose,
C.A.F.D.: Desvi: An architecture for detecting SLA violations in cloud
computing infrastructures. In: CloudComp 2010. Barcelona, Spain (Oc-
tober 2010)

[10] Hoyer, M., Schröder, K., Nebel, W.: Statistical static capacity
management in virtualized data centers supporting fine grained
QoS specification. In: Proceedings of the 1st International
Conference on Energy-Efficient Computing and Networking.
pp. 51–60. e-Energy ’10, ACM, New York, NY, USA (2010),
http://doi.acm.org/10.1145/1791314.1791322

[11] Huebscher, M.C., McCann, J.A.: A survey of autonomic computing—
degrees, models, and applications. ACM Comput. Surv. 40(3), 1–28
(2008)

[12] Kalyvianaki, E., Charalambous, T., Hand, S.: Self-adaptive
and self-configured CPU resource provisioning for virtualized
servers using Kalman filters. In: Proceedings of the 6th
international conference on Autonomic computing. pp.
117–126. ICAC ’09, ACM, New York, NY, USA (2009),
http://doi.acm.org/10.1145/1555228.1555261

[13] Khargharia, B., Hariri, S., Yousif, M.S.: Autonomic power and perfor-
mance management for computing systems. Cluster Computing 11(2),
167–181 (2008)

[14] Koomey, J.G.: Worldwide electricity used in data centers.
Environmental Research Letters 3(3), 034008 (2008),
http://stacks.iop.org/1748-9326/3/i=3/a=034008

[15] Łabaj, P.P., Leparc, G.G., Linggi, B.E., Markillie, L.M., Wiley, H.S.,
Kreil, D.P.: Characterization and improvement of RNA-Seq precision in
quantitative transcript expression profiling. Bioinformatics 27(13), i383–
i391 (2011)

[16] Maurer, M., Brandic, I., Sakellariou, R.: Simulating autonomic SLA
enactment in clouds using case based reasoning. In: ServiceWave 2010.
Ghent, Belgium (2010)

[17] Maurer, M., Brandic, I., Sakellariou, R.: Enacting SLAs in clouds using
rules. In: Euro-Par 2011. Bordeaux, France (2011)

[18] Meng, X., Isci, C., Kephart, J., Zhang, L., Bouillet, E., Pendarakis, D.:
Efficient resource provisioning in compute clouds via VM multiplex-
ing. In: Proceeding of the 7th international conference on Autonomic
computing. pp. 11–20. ICAC ’10, ACM, New York, NY, USA (2010),
http://doi.acm.org/10.1145/1809049.1809052

[19] Padala, P., Shin, K.G., Zhu, X., Uysal, M., Wang, Z., Singhal, S.,
Merchant, A., Salem, K.: Adaptive control of virtualized resources
in utility computing environments. In: Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2007.
pp. 289–302. EuroSys ’07, ACM, New York, NY, USA (2007),
http://doi.acm.org/10.1145/1272996.1273026

[20] Petrucci, V., Loques, O., Mossé, D.: A dynamic optimization model for
power and performance management of virtualized clusters. In: e-Energy
’10. pp. 225–233. ACM, New York, NY, USA (2010)

[21] Ramirez, A.J., Knoester, D.B., Cheng, B.H., McKinley, P.K.: Applying
genetic algorithms to decision making in autonomic computing systems.
In: Proceedings of the 6th international conference on Autonomic
computing. pp. 97–106. ICAC ’09, ACM, New York, NY, USA (2009),
http://doi.acm.org/10.1145/1555228.1555258

[22] Rao, J., Bu, X., Xu, C.Z., Wang, L., Yin, G.: Vconf: a rein-
forcement learning approach to virtual machines auto-configuration.
In: ICAC ’09. pp. 137–146. ACM, New York, NY, USA (2009),
http://doi.acm.org/10.1145/1555228.1555263

[23] Song, B., Hassan, M., nam Huh, E.: A novel heuristic-based task
selection and allocation framework in dynamic collaborative cloud
service platform. In: Cloud Computing Technology and Science (Cloud-
Com), 2010 IEEE Second International Conference on. pp. 360 –367
(December 2010)

[24] Trapnell, C., Pachter, L., Salzberg, S.L.: Tophat: discovering splice
junctions with RNA-Seq. Bioinformatics 25(9), 1105–1111 (2009)

[25] Wood, T., Shenoy, P., Venkataramani, A., Yousif, M.: Sandpiper: Black-
box and gray-box resource management for virtual machines. Computer
Networks 53(17), 2923 – 2938 (2009)

[26] Yazir, Y., Matthews, C., Farahbod, R., Neville, S., Guitouni, A., Ganti,
S., Coady, Y.: Dynamic resource allocation in computing clouds using
distributed multiple criteria decision analysis. In: Cloud Computing
(CLOUD), 2010 IEEE 3rd International Conference on. pp. 91–98 (July
2010)

